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One kind of soundness for Linear Logic as to Phase Semantics is dealt
with.
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What is Linear Logic?

What is Linear Logic?

Features:

Decomposition of Classical Logic

Realizing constructivity keeping Duality (symmetry) intact

Resource sensitive (i.e. each hypothesize can be used exactly at once)

Suitable for expressing parallel computing
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What is Linear Logic?

Decomposition of Classical Logic

Familiar connectives “∧” and “∨” break into weaker four connectives:

“∧” into “⊗” and “&”

“∨” into “`” and “⊕”

Another viewpoint:

Multiplicative are “⊗” and “`”

Additive are “&” and “⊕”

System containing only Multiplicative and Additive is called MALL
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What is Linear Logic?

Resource sensitiveness

“⊸” is linear version of “⇒”

Usual logic :

X X ⇒ Y
Y (but X still holds.)

Linear Logic :

X X ⊸ Y
Y (and then X disappears!)
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What is Linear Logic?

⊗ : Tensor, suitable for expressing parallel computing

f : A ⊸ C g : B ⊸ D

f ⊗ g : A⊗ B ⊸ C ⊗ D

Meaning : Programs which do NOT share the same resouce can be
executed at the same time.
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What is Linear Logic?

& : Cartesian product

f : X ⊸ Y g : X ⊸ Z

f & g : X ⊸ Y & Z

and

Y & Z ⊬ Y ⊗ Z

Meaning : Programs which share the same resouce CANNOT be executed
at the same time unless copying the resource, while we CAN CHOOSE
either Y or Z .
In fact, copying and deleting of resources are explicit.
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What is Linear Logic?

⊕ : Additive Sum, dual of “&”

Y ⊕ Z ⊬ Y

nor

Y ⊕ Z ⊬ Z

Meaning : Either Y or Z holds, but we CANNOT choose neither Y or Z .
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What is Linear Logic?

Off topic: Variants of Linear Logic

Multiplicative are “⊗” and “`”

Additive are “&” and “⊕”

Exponential are “!” and “?”

MAELL

MALL MELL

MLL
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What is Phase Semantics?

What is Phase Semantics?

First off, what is semantics?

To provide rigorous defnitions that abstract away from
implementation details

To provide mathematical tools for proving properties of programs

(Amadio, Curien)

Phase Semantics is a kind of semantics, which is based on the idea of
Tarskian style:

“A” means A which is truth value (true or false)

“A ∧ B” means “A” and “B”

and so on.
This seems ovious, however, there is another semantics which is not the
case: Coherent Semantics, which is BHK style inconsistent semantics.
Phase Space is Phase Semantics for MALL.
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What is Phase Semantics?

Other semantics

Coherent semantics

Categorical semantics

Geometry of interaction

Game semantics
and so on.
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What is soundness?

What is soundness?

Formulae derived using specific rules are semantically valid, which is
minimum requirement for semantics in general (Systems which yields lie
are compeletely useless).
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Proof of soundness

Syntax of MALL

Definition 1

Formula of MALL.

A :: = p | p⊥

| A⊗ A | A⊕ A

| A& A | A` A

| 1 | 0 | ⊤ | ⊥
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Proof of soundness

Inference rules of MALL I

Inference rules of MALL.

(identity)
⊢ A,A⊥ ⊢ Γ,A ⊢ A⊥,∆

(cut)⊢ Γ,∆

⊢ Γ,A,B,∆
(exchange)⊢ Γ,B,A,∆

(one)⊢ 1
⊢ Γ (false)⊢ Γ,⊥
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Proof of soundness

Inference rules of MALL II

⊢ Γ,A ⊢ ∆,B
(times)⊢ Γ,A⊗ B,∆

⊢ Γ,A,B
(par)⊢ Γ,A` B

(true)⊢ Γ,⊤ (no rule for zero)

⊢ Γ,A ⊢ Γ,B
(with)⊢ Γ,A& B

⊢ Γ,A
(left plus)⊢ Γ,A⊕ B

⊢ Γ,B
(right plus)⊢ Γ,A⊕ B
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Proof of soundness

Phase Space

We give semantics for MALL.

Definition 2

Phase Space := (M,⊥)
where M is commutative monoid and ⊥ ⊆ M is defined.

Definition 3

Commutative monoid M holds

commutativity: pq = qp

associativity: (pq)r = p(qr)

identity: 1p = p1 = p

for all p, q, r ∈ M.
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Proof of soundness

Definition 4

X ⊸ Y is defined as

m ∈ X ⊸ Y

:⇔ ∀x(x ∈ X ⇒ mx ∈ Y )

Definition 5

orthogonal
X⊥ := X ⊸ ⊥

Definition 6

X is fact iff
X = X⊥⊥

or equivalently, X is of the form Y⊥.
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Proof of soundness

Definition 7

For convention,

xy ∈ X .Y :⇔ x ∈ X ∧ y ∈ Y

Let X and Y be fact. Connectives are interpreted in this way (more
precisely, we are defining interpretation function from formula to ℘(M)):

X ⊗ Y := (X .Y )⊥⊥

X ` Y := (X⊥.Y⊥)⊥

X ⊸ Y = (X .Y⊥)⊥

X & Y := X ∩ Y

X ⊕ Y := (X ∪ Y )⊥⊥

1 := {1}⊥⊥

0 := ∅⊥⊥

⊤ := M
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Proof of soundness

Validity

Definition 8

Sequent

⊢ Γ,A

is interpreted as subset of M

Γ` A

Definition 9

X (as formula) is valid iff 1 ∈ X (X ⊆ M)
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Proof of soundness

Proof of soundness I

Theorem 10

Sequent which are provable in MALL are all valid in Phase Space
i. e.

⊢ X ⇒ 1 ∈ X

where X are all fact.

By straightforward induction on inference rules.

1
(identity)

⊢ A,A⊥

A` A⊥ = A ⊸ A ∋ 1

(∵ definition of identity 1)
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Proof of soundness

Proof of soundness II

2 (true)⊢ Γ,⊤

Γ`⊤ = 0 ⊸ Γ

Since 0 is the smallest fact, 0 ⊆ Γ. This implies ∀z , z ∈ 0 ⇒ z ∈ Γ.
Hence ∀z , z ∈ 0 ⇒ 1z ∈ Γ.
∴ By definition of “⊸”, 1 ∈ 0 ⊸ Γ = Γ`⊤

3 (one)⊢ 1
Oviously,

1 ∈ {1} ⊆ {1}⊥⊥ = 1
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Proof of soundness

Proof of soundness III

4
⊢ Γ,A ⊢ A⊥,∆

(cut)⊢ Γ,∆
We have to show that if 1 ∈ Γ` A and 1 ∈ A⊥ `∆ then 1 ∈ Γ`∆.
In fact this is equivalent to

1 ∈ Γ⊥ ⊸ A, 1 ∈ A ⊸ ∆

⇒1 ∈ Γ⊥ ⊸ ∆

This is easily followed by

Γ⊥ ⊆ A,A ⊆ ∆

⇒Γ⊥ ⊆ ∆

5
⊢ Γ,A,B,∆

(exchange)⊢ Γ,B,A,∆
∵ “∧” is commutative.
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Proof of soundness

Proof of soundness IV

6
⊢ Γ,A ⊢ Γ,B

(with)⊢ Γ,A& B
We have to show that if 1 ∈ Γ` A and 1 ∈ Γ` B then
1 ∈ Γ` (A& B). Here we use distributivity of ` over &:

(Γ` A) & (Γ` B) = Γ` (A& B)

By definition of & and hypothesis, left hand side contains 1, and so
does right hand side.

7
⊢ Γ,A

(left plus)⊢ Γ,A⊕ B

⊢ Γ,B
(right plus)⊢ Γ,A⊕ B

Similarly, we use half-distributivity of ` over ⊕:

(Γ` A)⊕ (Γ` B) ⊆ Γ` (A⊕ B)
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Proof of soundness

Proof of soundness V

8
⊢ Γ (false)⊢ Γ,⊥

Γ`⊥ = 1 ⊸ Γ

By definition, 1 is the smallest fact contains 1 i. e. 1 ⊆ Γ so that
∀e, e ∈ 1 ⇒ e = 1e ∈ Γ hence 1 ∈ 1 ⊸ Γ.

9
⊢ Γ,A ⊢ ∆,B

(times)⊢ Γ,A⊗ B,∆
We have to show that if 1 ∈ Γ` A and 1 ∈ ∆` B then
1 ∈ Γ`∆` (A⊗ B). Hypotheses can be transformed into
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Proof of soundness

Proof of soundness VI

1 ∈ Γ⊥ ⊸ A and 1 ∈ ∆⊥ ⊸ B respectively. Therefore, we have
Γ⊥ ⊆ A and ∆⊥ ⊆ B

⇒ Γ⊥.∆⊥ ⊆ A.B

⇒ (Γ⊥.∆⊥)⊥⊥ ⊆ (A.B)⊥⊥

⇒ Γ⊥ ⊗∆⊥ ⊆ A⊗ B

⇒ Γ⊥ ⊗∆⊥ ⊸ A⊗ B ∋ 1

⇒ Γ`∆` (A⊗ B) ∋ 1

10
⊢ Γ,A,B

(par)⊢ Γ,A` B
This is tautology. □
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Future work

Future work

Categorical semantics: symmetrical monoidal (closed) category

Application to functional programming: Combinatorial linear logic,
categorical and linear machine

Game semantics
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