Soundness for Linear Logic regarding Phase Semantics

Ryo Haruyama

Nagoya Univ.

January 29, 2021

< A > < E

January 29, 2021

One kind of soundness for Linear Logic as to Phase Semantics is dealt with.

э

Image: A match a ma

What is Linear Logic?

Features:

- Decomposition of Classical Logic
- Realizing constructivity keeping Duality (symmetry) intact
- Resource sensitive (i.e. each hypothesize can be used exactly at once)
- Suitable for expressing parallel computing

イロト イ伺ト イヨト イヨト

Decomposition of Classical Logic

Familiar connectives " \wedge " and " \vee " break into weaker four connectives:

- \bullet "^" into " \otimes " and "&"
- " \lor " into " \mathfrak{N} " and " \oplus "

Another viewpoint:

- *Multiplicative* are "⊗" and "??"
- Additive are "&" and "⊕"

System containing only Multiplicative and Additive is called MALL

(日) (四) (日) (日) (日)

Resource sensitiveness

"—•" is linear version of " \Rightarrow "

Usual logic :

$$\frac{X \quad X \Rightarrow Y}{Y \text{ (but } X \text{ still holds.)}}$$

Linear Logic :

$$\frac{X \quad X \multimap Y}{Y \text{ (and then } X \text{ disappears!)}}$$

イロト イポト イヨト イヨト

3

5/1

January 29, 2021

 \otimes : Tensor, suitable for expressing parallel computing

$$\frac{f: A \multimap C \qquad g: B \multimap D}{f \otimes g: A \otimes B \multimap C \otimes D}$$

Meaning : Programs which do NOT share the same resouce can be executed at the same time.

< □ > < 同 > < 回 > < 回 > < 回 >

January 29, 2021

& : Cartesian product

$$\frac{f: X \multimap Y \quad g: X \multimap Z}{f \& g: X \multimap Y \& Z}$$

and

$Y \& Z \nvDash Y \otimes Z$

Meaning : Programs which share the same resouce CANNOT be executed at the same time unless copying the resource, while we CAN CHOOSE either Y or Z. In fact, copying and deleting of resources are explicit.

< ロ > < 同 > < 回 > < 回 > < 回 >

January 29, 2021

What is Linear Logic?

\oplus : Additive Sum, dual of "&"

$Y \oplus Z \nvDash Y$

nor

$Y \oplus Z \nvDash Z$

Meaning : Either Y or Z holds, but we CANNOT choose neither Y or Z.

< □ > < 同 > < 回 > < 回 > < 回 >

3

8/1

January 29, 2021

Off topic: Variants of Linear Logic

- Multiplicative are " \otimes " and " \Re "
- Additive are "&" and " \oplus "
- Exponential are "!" and "?"

< /₽ > < ∃

What is Phase Semantics?

First off, what is semantics?

• To provide rigorous defnitions that abstract away from implementation details

• To provide mathematical tools for proving properties of programs (Amadio, Curien)

Phase Semantics is a kind of semantics, which is based on the idea of *Tarskian style*:

- "A" means A which is truth value (true or false)
- "A \wedge B" means "A" and "B"

and so on.

This seems ovious, however, there is another semantics which is not the case: *Coherent Semantics*, which is BHK style inconsistent semantics. *Phase Space* is Phase Semantics for MALL.

Other semantics

- Coherent semantics
- Categorical semantics
- Geometry of interaction
- Game semantics and so on.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

< E

January 29, 2021

э

What is *soundness*?

Formulae derived using specific rules are semantically valid, which is minimum requirement for semantics in general (Systems which yields lie are compeletely useless).

< □ > < 同 > < 回 > < 回 > < 回 >

Syntax of MALL

Definition 1

Formula of MALL.

$$A ::= p \mid p^{\perp}$$
$$\mid A \otimes A \mid A \oplus A$$
$$\mid A \& A \mid A \Im A$$
$$\mid \mathbf{1} \mid \mathbf{0} \mid \top \mid \bot$$

< □ > < □ > < □ > < □ > < □ >

э

13/1

January 29, 2021

Inference rules of MALL I

Inference rules of MALL.

$$\begin{array}{c|c} \hline & & \vdash \Gamma, A & \vdash A^{\perp}, \Delta \\ \hline & & \vdash \Gamma, A, B, \Delta \\ \hline & & \vdash \Gamma, B, A, \Delta \end{array} (exchange) \\ \hline & & \hline & \vdash \mathbf{1} (one) & \quad \begin{array}{c} \vdash \Gamma \\ \vdash \Gamma, \bot \end{array} (false) \end{array}$$

э

< □ > < □ > < □ > < □ > < □ >

Inference rules of MALL II

$$\frac{\vdash \Gamma, A \vdash \Delta, B}{\vdash \Gamma, A \otimes B, \Delta} (times) \qquad \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \Im B} (par)$$

$$\frac{\vdash \Gamma, T}{\vdash \Gamma, T} (true) \qquad (no \ rule \ for \ zero)$$

$$\frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \otimes B} (with) \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, A \oplus B} (left \ plus)$$

$$\frac{\vdash \Gamma, B}{\vdash \Gamma, A \oplus B} (right \ plus)$$

Haruyama (Nagoya Univ.)

3

< □ > < □ > < □ > < □ > < □ >

Phase Space

We give semantics for MALL.

Definition 2

Phase Space := (M, \bot) where M is commutative monoid and $\bot \subseteq M$ is defined.

Definition 3

Commutative monoid M holds

- commutativity: pq = qp
- associativity: (pq)r = p(qr)
- identity: 1p = p1 = p

for all $p, q, r \in M$.

< ロ > < 同 > < 回 > < 回 > < 回 >

Definition 4

 $X \multimap Y$ is defined as

$$m \in X \multimap Y$$

: $\Leftrightarrow \forall x (x \in X \Rightarrow mx \in Y)$

Definition 5

orthogonal

$$X^{\perp} := X \multimap \perp$$

Definition 6

X is fact iff

$$X = X^{\perp \perp}$$

or equivalently, X is of the form Y^{\perp} .

э

< □ > < 同 > < 回 > < 回 > < 回 >

Definition 7 For convention,

$$xy \in X.Y : \Leftrightarrow x \in X \land y \in Y$$

Let X and Y be fact. Connectives are interpreted in this way (more precisely, we are defining interpretation function from *formula* to $\wp(M)$):

$$X \otimes Y := (X.Y)^{\perp \perp}$$

$$X \Re Y := (X^{\perp}.Y^{\perp})^{\perp}$$

$$X \multimap Y = (X.Y^{\perp})^{\perp}$$

$$X \& Y := X \cap Y$$

$$X \oplus Y := (X \cup Y)^{\perp \perp}$$

$$\mathbf{1} := \{1\}^{\perp \perp}$$

$$\mathbf{0} := \varnothing^{\perp \perp}$$

$$\top := M$$

Validity

Definition 8

Sequent

 $\vdash \Gamma, A$

is interpreted as subset of M

Г 🕉 А

Definition 9

 \underline{X} (as formula) is valid iff $1 \in \underline{X}$ ($\underline{X} \subseteq M$)

January 29, 2021

Proof of soundness I

Theorem 10

Sequent which are provable in MALL are all valid in Phase Space i. e.

$$\vdash \underline{X} \Rightarrow 1 \in \underline{X}$$

where \underline{X} are all fact.

By straightforward induction on inference rules. $\underbrace{\bullet}_{\vdash A, A^{\perp}} (identity)$

$$A \stackrel{\mathcal{N}}{\to} A^{\perp} = A \multimap A \ni 1$$

< □ > < □ > < □ > < □ >

January 29, 2021

Proof of soundness II

Since **0** is the smallest fact, $\mathbf{0} \subseteq \Gamma$. This implies $\forall z, z \in \mathbf{0} \Rightarrow z \in \Gamma$. Hence $\forall z, z \in \mathbf{0} \Rightarrow 1z \in \Gamma$. \therefore By definition of " \neg o", $1 \in \mathbf{0} \neg \Gamma = \Gamma \ \mathfrak{N} \top$ **3** $\overline{\vdash \mathbf{1}} (one)$ Oviously,

$$1 \in \{1\} \subseteq \{1\}^{\perp \perp} = \mathbf{1}$$

< □ > < 同 > < 回 > < 回 > < 回 >

Proof of soundness III

We have to show that if $1 \in \Gamma \ \mathfrak{N} A$ and $1 \in A^{\perp} \ \mathfrak{N} \Delta$ then $1 \in \Gamma \ \mathfrak{N} \Delta$. In fact this is equivalent to

$$1 \in \Gamma^{\perp} \multimap A, 1 \in A \multimap \Delta$$
$$\Rightarrow 1 \in \Gamma^{\perp} \multimap \Delta$$

This is easily followed by

$$\Gamma^{\perp} \subseteq A, A \subseteq \Delta$$
$$\Rightarrow \Gamma^{\perp} \subseteq \Delta$$

LL

$$\stackrel{\bullet}{\to} \frac{\vdash \Gamma, A, B, \Delta}{\vdash \Gamma, B, A, \Delta} (exchange) \\ \stackrel{\bullet}{\to} \stackrel{\bullet}{\to}$$

Proof of soundness IV

•
$$\frac{\vdash \Gamma, A \qquad \vdash \Gamma, B}{\vdash \Gamma, A \& B}$$
 (with)
We have to show that if $1 \in \Gamma \ \mathfrak{P} A$ and $1 \in \Gamma \ \mathfrak{P} B$ then
 $1 \in \Gamma \ \mathfrak{P} (A \& B)$. Here we use distributivity of $\ \mathfrak{P}$ over $\&$:

 $(\Gamma \operatorname{\mathcal{P}} A) \And (\Gamma \operatorname{\mathcal{P}} B) = \Gamma \operatorname{\mathcal{P}} (A \And B)$

By definition of & and hypothesis, left hand side contains 1, and so does right hand side.

 $\stackrel{}{\bullet} \frac{\vdash \Gamma, A}{\vdash \Gamma, A \oplus B} (left plus) \qquad \frac{\vdash \Gamma, B}{\vdash \Gamma, A \oplus B} (right plus) \\ \text{Similarly, we use half-distributivity of } over \oplus:$

$$(\Gamma \operatorname{\mathfrak{V}} A) \oplus (\Gamma \operatorname{\mathfrak{V}} B) \subseteq \Gamma \operatorname{\mathfrak{V}} (A \oplus B)$$

< ロ > < 同 > < 回 > < 回 > < 回 >

Proof of soundness V

$$\mathsf{F}\,\mathfrak{P}\,\bot=\mathbf{1}\multimap\mathsf{F}$$

By definition, **1** is the smallest fact contains 1 i. e. $\mathbf{1} \subseteq \Gamma$ so that $\forall e, e \in \mathbf{1} \Rightarrow e = 1e \in \Gamma$ hence $1 \in \mathbf{1} \multimap \Gamma$.

• $\frac{\vdash \Gamma, A \qquad \vdash \Delta, B}{\vdash \Gamma, A \otimes B, \Delta}$ (times) We have to show that if $1 \in \Gamma \ \mathfrak{P} A$ and $1 \in \Delta \ \mathfrak{P} B$ then $1 \in \Gamma \ \mathfrak{P} \Delta \ \mathfrak{P} (A \otimes B)$. Hypotheses can be transformed into

Proof of soundness VI

 $1 \in \Gamma^{\perp} \multimap A$ and $1 \in \Delta^{\perp} \multimap B$ respectively. Therefore, we have $\Gamma^{\perp} \subseteq A$ and $\Delta^{\perp} \subseteq B$

$$\Rightarrow \Gamma^{\perp} . \Delta^{\perp} \subseteq A.B \Rightarrow (\Gamma^{\perp} . \Delta^{\perp})^{\perp \perp} \subseteq (A.B)^{\perp \perp} \Rightarrow \Gamma^{\perp} \otimes \Delta^{\perp} \subseteq A \otimes B \Rightarrow \Gamma^{\perp} \otimes \Delta^{\perp} \multimap A \otimes B \ni 1 \Rightarrow \Gamma \ \Im \ \Delta \ \Im (A \otimes B) \ni 1$$

LL

$$\textcircled{P} \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \, \mathfrak{P} B} (par)$$
This is tautology.

Future work

- Categorical semantics: symmetrical monoidal (closed) category
- Application to functional programming: Combinatorial linear logic, categorical and linear machine
- Game semantics

< □ > < 同 > < 回 > < 回 > < 回 >